org.apache.spark.ml.tuning

CrossValidator

class CrossValidator extends Estimator[CrossValidatorModel] with CrossValidatorParams with Logging

:: AlphaComponent :: K-fold cross validation.

Annotations
@AlphaComponent()
Linear Supertypes
CrossValidatorParams, Estimator[CrossValidatorModel], Params, Identifiable, PipelineStage, Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. CrossValidator
  2. CrossValidatorParams
  3. Estimator
  4. Params
  5. Identifiable
  6. PipelineStage
  7. Logging
  8. Serializable
  9. Serializable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CrossValidator()

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. val estimator: Param[Estimator[_]]

    param for the estimator to be cross-validated

    param for the estimator to be cross-validated

    Definition Classes
    CrossValidatorParams
  11. val estimatorParamMaps: Param[Array[ParamMap]]

    param for estimator param maps

    param for estimator param maps

    Definition Classes
    CrossValidatorParams
  12. val evaluator: Param[Evaluator]

    param for the evaluator for selection

    param for the evaluator for selection

    Definition Classes
    CrossValidatorParams
  13. def explainParams(): String

    Returns the documentation of all params.

    Returns the documentation of all params.

    Definition Classes
    Params
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def fit(dataset: SchemaRDD, paramMap: ParamMap): CrossValidatorModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    parameter map

    returns

    fitted model

    Definition Classes
    CrossValidatorEstimator
  16. def fit(dataset: JavaSchemaRDD, paramMaps: Array[ParamMap]): List[CrossValidatorModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters.

    dataset

    input dataset

    paramMaps

    an array of parameter maps

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
  17. def fit(dataset: JavaSchemaRDD, paramMap: ParamMap): CrossValidatorModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    parameter map

    returns

    fitted model

    Definition Classes
    Estimator
  18. def fit(dataset: JavaSchemaRDD, paramPairs: ParamPair[_]*): CrossValidatorModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    paramPairs

    optional list of param pairs (overwrite embedded params)

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @varargs()
  19. def fit(dataset: SchemaRDD, paramMaps: Array[ParamMap]): Seq[CrossValidatorModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could overwrite this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    an array of parameter maps

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
  20. def fit(dataset: SchemaRDD, paramPairs: ParamPair[_]*): CrossValidatorModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    paramPairs

    optional list of param pairs (overwrite embedded params)

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @varargs()
  21. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  22. def getEstimator: Estimator[_]

    Definition Classes
    CrossValidatorParams
  23. def getEstimatorParamMaps: Array[ParamMap]

    Definition Classes
    CrossValidatorParams
  24. def getEvaluator: Evaluator

    Definition Classes
    CrossValidatorParams
  25. def getNumFolds: Int

    Definition Classes
    CrossValidatorParams
  26. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  27. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  28. def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  29. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  30. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  31. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  32. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  33. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  34. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  35. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  36. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  37. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  38. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  39. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  40. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  41. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  42. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  43. final def notify(): Unit

    Definition Classes
    AnyRef
  44. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  45. val numFolds: IntParam

    param for number of folds for cross validation

    param for number of folds for cross validation

    Definition Classes
    CrossValidatorParams
  46. val paramMap: ParamMap

    Internal param map.

    Internal param map.

    Attributes
    protected
    Definition Classes
    Params
  47. def params: Array[Param[_]]

    Returns all params.

    Returns all params.

    Definition Classes
    Params
  48. def setEstimator(value: Estimator[_]): CrossValidator.this.type

  49. def setEstimatorParamMaps(value: Array[ParamMap]): CrossValidator.this.type

  50. def setEvaluator(value: Evaluator): CrossValidator.this.type

  51. def setNumFolds(value: Int): CrossValidator.this.type

  52. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  53. def toString(): String

    Definition Classes
    AnyRef → Any
  54. def transformSchema(schema: StructType, paramMap: ParamMap, logging: Boolean): StructType

    Derives the output schema from the input schema and parameters, optionally with logging.

    Derives the output schema from the input schema and parameters, optionally with logging.

    Attributes
    protected
    Definition Classes
    PipelineStage
  55. def validate(): Unit

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    Definition Classes
    Params
  56. def validate(paramMap: ParamMap): Unit

    Validates parameter values stored internally plus the input parameter map.

    Validates parameter values stored internally plus the input parameter map. Raises an exception if any parameter is invalid.

    Definition Classes
    Params
  57. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  58. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  59. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from CrossValidatorParams

Inherited from Estimator[CrossValidatorModel]

Inherited from Params

Inherited from Identifiable

Inherited from PipelineStage

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped