org.apache.spark.mllib.stat.distribution

MultivariateGaussian

class MultivariateGaussian extends Serializable

:: DeveloperApi :: This class provides basic functionality for a Multivariate Gaussian (Normal) Distribution. In the event that the covariance matrix is singular, the density will be computed in a reduced dimensional subspace under which the distribution is supported. (see http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Degenerate_case)

Annotations
@Since( "1.3.0" ) @DeveloperApi()
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MultivariateGaussian
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultivariateGaussian(mu: Vector, sigma: Matrix)

    mu

    The mean vector of the distribution

    sigma

    The covariance matrix of the distribution

    Annotations
    @Since( "1.3.0" )

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def logpdf(x: Vector): Double

    Returns the log-density of this multivariate Gaussian at given point, x

    Returns the log-density of this multivariate Gaussian at given point, x

    Annotations
    @Since( "1.3.0" )
  15. val mu: Vector

    The mean vector of the distribution

    The mean vector of the distribution

    Annotations
    @Since( "1.3.0" )
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. def pdf(x: Vector): Double

    Returns density of this multivariate Gaussian at given point, x

    Returns density of this multivariate Gaussian at given point, x

    Annotations
    @Since( "1.3.0" )
  20. val sigma: Matrix

    The covariance matrix of the distribution

    The covariance matrix of the distribution

    Annotations
    @Since( "1.3.0" )
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def toString(): String

    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped