Class/Object

org.apache.spark.mllib.regression

LinearRegressionModel

Related Docs: object LinearRegressionModel | package regression

Permalink

class LinearRegressionModel extends GeneralizedLinearModel with RegressionModel with Serializable with Saveable with PMMLExportable

Regression model trained using LinearRegression.

Annotations
@Since( "0.8.0" )
Source
LinearRegression.scala
Linear Supertypes
PMMLExportable, Saveable, RegressionModel, GeneralizedLinearModel, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LinearRegressionModel
  2. PMMLExportable
  3. Saveable
  4. RegressionModel
  5. GeneralizedLinearModel
  6. Serializable
  7. Serializable
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearRegressionModel(weights: Vector, intercept: Double)

    Permalink

    weights

    Weights computed for every feature.

    intercept

    Intercept computed for this model.

    Annotations
    @Since( "1.1.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def formatVersion: String

    Permalink

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    LinearRegressionModelSaveable
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. val intercept: Double

    Permalink

    Intercept computed for this model.

    Intercept computed for this model.

    Definition Classes
    LinearRegressionModelGeneralizedLinearModel
    Annotations
    @Since( "0.8.0" )
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. def predict(testData: JavaRDD[Vector]): JavaRDD[Double]

    Permalink

    Predict values for examples stored in a JavaRDD.

    Predict values for examples stored in a JavaRDD.

    testData

    JavaRDD representing data points to be predicted

    returns

    a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction

    Definition Classes
    RegressionModel
    Annotations
    @Since( "1.0.0" )
  18. def predict(testData: Vector): Double

    Permalink

    Predict values for a single data point using the model trained.

    Predict values for a single data point using the model trained.

    testData

    array representing a single data point

    returns

    Double prediction from the trained model

    Definition Classes
    GeneralizedLinearModel
    Annotations
    @Since( "1.0.0" )
  19. def predict(testData: RDD[Vector]): RDD[Double]

    Permalink

    Predict values for the given data set using the model trained.

    Predict values for the given data set using the model trained.

    testData

    RDD representing data points to be predicted

    returns

    RDD[Double] where each entry contains the corresponding prediction

    Definition Classes
    GeneralizedLinearModel
    Annotations
    @Since( "1.0.0" )
  20. def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double

    Permalink

    Predict the result given a data point and the weights learned.

    Predict the result given a data point and the weights learned.

    dataMatrix

    Row vector containing the features for this data point

    weightMatrix

    Column vector containing the weights of the model

    intercept

    Intercept of the model.

    Attributes
    protected
    Definition Classes
    LinearRegressionModelGeneralizedLinearModel
  21. def save(sc: SparkContext, path: String): Unit

    Permalink

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    LinearRegressionModelSaveable
    Annotations
    @Since( "1.3.0" )
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def toPMML(): String

    Permalink

    :: Experimental :: Export the model to a String in PMML format

    :: Experimental :: Export the model to a String in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Experimental() @Since( "1.4.0" )
  24. def toPMML(outputStream: OutputStream): Unit

    Permalink

    :: Experimental :: Export the model to the OutputStream in PMML format

    :: Experimental :: Export the model to the OutputStream in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Experimental() @Since( "1.4.0" )
  25. def toPMML(sc: SparkContext, path: String): Unit

    Permalink

    :: Experimental :: Export the model to a directory on a distributed file system in PMML format

    :: Experimental :: Export the model to a directory on a distributed file system in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Experimental() @Since( "1.4.0" )
  26. def toPMML(localPath: String): Unit

    Permalink

    :: Experimental :: Export the model to a local file in PMML format

    :: Experimental :: Export the model to a local file in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Experimental() @Since( "1.4.0" )
  27. def toString(): String

    Permalink

    Print a summary of the model.

    Print a summary of the model.

    Definition Classes
    GeneralizedLinearModel → AnyRef → Any
  28. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. val weights: Vector

    Permalink

    Weights computed for every feature.

    Weights computed for every feature.

    Definition Classes
    LinearRegressionModelGeneralizedLinearModel
    Annotations
    @Since( "1.0.0" )

Inherited from PMMLExportable

Inherited from Saveable

Inherited from RegressionModel

Inherited from GeneralizedLinearModel

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped