Class/Object

org.apache.spark.ml.classification

MultilayerPerceptronClassifier

Related Docs: object MultilayerPerceptronClassifier | package classification

Permalink

class MultilayerPerceptronClassifier extends Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel] with MultilayerPerceptronParams with DefaultParamsWritable

:: Experimental :: Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax. Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of labels.

Annotations
@Since( "1.5.0" ) @Experimental()
Source
MultilayerPerceptronClassifier.scala
Linear Supertypes
DefaultParamsWritable, MLWritable, MultilayerPerceptronParams, HasStepSize, HasTol, HasMaxIter, HasSeed, Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Estimator[MultilayerPerceptronClassificationModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. MultilayerPerceptronClassifier
  2. DefaultParamsWritable
  3. MLWritable
  4. MultilayerPerceptronParams
  5. HasStepSize
  6. HasTol
  7. HasMaxIter
  8. HasSeed
  9. Predictor
  10. PredictorParams
  11. HasPredictionCol
  12. HasFeaturesCol
  13. HasLabelCol
  14. Estimator
  15. PipelineStage
  16. Logging
  17. Params
  18. Serializable
  19. Serializable
  20. Identifiable
  21. AnyRef
  22. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultilayerPerceptronClassifier()

    Permalink
    Annotations
    @Since( "1.5.0" )
  2. new MultilayerPerceptronClassifier(uid: String)

    Permalink
    Annotations
    @Since( "1.5.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val blockSize: IntParam

    Permalink

    Block size for stacking input data in matrices to speed up the computation.

    Block size for stacking input data in matrices to speed up the computation. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is between 10 and 1000. Default: 128

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  7. final def clear(param: Param[_]): MultilayerPerceptronClassifier.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def copy(extra: ParamMap): MultilayerPerceptronClassifier

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    MultilayerPerceptronClassifierPredictorEstimatorPipelineStageParams
    Annotations
    @Since( "1.5.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  15. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  16. def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]

    Permalink

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Attributes
    protected
    Definition Classes
    Predictor
  17. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  19. final val featuresCol: Param[String]

    Permalink

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fit(dataset: Dataset[_]): MultilayerPerceptronClassificationModel

    Permalink

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    PredictorEstimator
  22. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[MultilayerPerceptronClassificationModel]

    Permalink

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  23. def fit(dataset: Dataset[_], paramMap: ParamMap): MultilayerPerceptronClassificationModel

    Permalink

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MultilayerPerceptronClassificationModel

    Permalink

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  25. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  26. final def getBlockSize: Int

    Permalink

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  27. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  29. final def getFeaturesCol: String

    Permalink

    Definition Classes
    HasFeaturesCol
  30. final def getInitialWeights: Vector

    Permalink

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  31. final def getLabelCol: String

    Permalink

    Definition Classes
    HasLabelCol
  32. final def getLayers: Array[Int]

    Permalink

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  33. final def getMaxIter: Int

    Permalink

    Definition Classes
    HasMaxIter
  34. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  35. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  36. final def getPredictionCol: String

    Permalink

    Definition Classes
    HasPredictionCol
  37. final def getSeed: Long

    Permalink

    Definition Classes
    HasSeed
  38. final def getSolver: String

    Permalink

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  39. final def getStepSize: Double

    Permalink

    Definition Classes
    HasStepSize
  40. final def getTol: Double

    Permalink

    Definition Classes
    HasTol
  41. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  42. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  43. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  44. final val initialWeights: Param[Vector]

    Permalink

    The initial weights of the model.

    The initial weights of the model.

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  45. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  46. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  47. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  48. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  49. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  50. final val labelCol: Param[String]

    Permalink

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  51. final val layers: IntArrayParam

    Permalink

    Layer sizes including input size and output size.

    Layer sizes including input size and output size.

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "1.5.0" )
  52. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  53. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  54. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  58. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  59. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  60. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  64. final val maxIter: IntParam

    Permalink

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  65. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  66. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  67. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  68. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Note: Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

    Definition Classes
    Params
  69. final val predictionCol: Param[String]

    Permalink

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  70. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  71. final val seed: LongParam

    Permalink

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  72. final def set(paramPair: ParamPair[_]): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  73. final def set(param: String, value: Any): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  74. final def set[T](param: Param[T], value: T): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  75. def setBlockSize(value: Int): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param blockSize.

    Sets the value of param blockSize. Default is 128.

    Annotations
    @Since( "1.5.0" )
  76. final def setDefault(paramPairs: ParamPair[_]*): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  77. final def setDefault[T](param: Param[T], value: T): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  78. def setFeaturesCol(value: String): MultilayerPerceptronClassifier

    Permalink

    Definition Classes
    Predictor
  79. def setInitialWeights(value: Vector): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param initialWeights.

    Sets the value of param initialWeights.

    Annotations
    @Since( "2.0.0" )
  80. def setLabelCol(value: String): MultilayerPerceptronClassifier

    Permalink

    Definition Classes
    Predictor
  81. def setLayers(value: Array[Int]): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param layers.

    Sets the value of param layers.

    Annotations
    @Since( "1.5.0" )
  82. def setMaxIter(value: Int): MultilayerPerceptronClassifier.this.type

    Permalink

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

    Annotations
    @Since( "1.5.0" )
  83. def setPredictionCol(value: String): MultilayerPerceptronClassifier

    Permalink

    Definition Classes
    Predictor
  84. def setSeed(value: Long): MultilayerPerceptronClassifier.this.type

    Permalink

    Set the seed for weights initialization if weights are not set

    Set the seed for weights initialization if weights are not set

    Annotations
    @Since( "1.5.0" )
  85. def setSolver(value: String): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param solver.

    Sets the value of param solver. Default is "l-bfgs".

    Annotations
    @Since( "2.0.0" )
  86. def setStepSize(value: Double): MultilayerPerceptronClassifier.this.type

    Permalink

    Sets the value of param stepSize (applicable only for solver "gd").

    Sets the value of param stepSize (applicable only for solver "gd"). Default is 0.03.

    Annotations
    @Since( "2.0.0" )
  87. def setTol(value: Double): MultilayerPerceptronClassifier.this.type

    Permalink

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-4.

    Annotations
    @Since( "1.5.0" )
  88. final val solver: Param[String]

    Permalink

    The solver algorithm for optimization.

    The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"

    Definition Classes
    MultilayerPerceptronParams
    Annotations
    @Since( "2.0.0" )
  89. final val stepSize: DoubleParam

    Permalink

    Param for Step size to be used for each iteration of optimization.

    Param for Step size to be used for each iteration of optimization.

    Definition Classes
    HasStepSize
  90. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  91. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  92. final val tol: DoubleParam

    Permalink

    Param for the convergence tolerance for iterative algorithms.

    Param for the convergence tolerance for iterative algorithms.

    Definition Classes
    HasTol
  93. def train(dataset: Dataset[_]): MultilayerPerceptronClassificationModel

    Permalink

    Train a model using the given dataset and parameters.

    Train a model using the given dataset and parameters. Developers can implement this instead of fit() to avoid dealing with schema validation and copying parameters into the model.

    dataset

    Training dataset

    returns

    Fitted model

    Attributes
    protected
    Definition Classes
    MultilayerPerceptronClassifierPredictor
  94. def transformSchema(schema: StructType): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Check transform validity and derive the output schema from the input schema.

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictorPipelineStage
  95. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  96. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    MultilayerPerceptronClassifierIdentifiable
    Annotations
    @Since( "1.5.0" )
  97. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., org.apache.spark.mllib.linalg.VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    PredictorParams
  98. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  99. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  100. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  101. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Deprecated Value Members

  1. def validateParams(): Unit

    Permalink

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    This only needs to check for interactions between parameters. Parameter value checks which do not depend on other parameters are handled by Param.validate(). This method does not handle input/output column parameters; those are checked during schema validation.

    Definition Classes
    Params
    Annotations
    @deprecated
    Deprecated

    (Since version 2.0.0) Will be removed in 2.1.0. Checks should be merged into transformSchema.

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from MultilayerPerceptronParams

Inherited from HasStepSize

Inherited from HasTol

Inherited from HasMaxIter

Inherited from HasSeed

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter setters

(expert-only) Parameter getters