Object/Class

org.apache.spark.mllib.optimization

GradientDescent

Related Docs: class GradientDescent | package optimization

Permalink

object GradientDescent extends Logging with Serializable

:: DeveloperApi :: Top-level method to run gradient descent.

Annotations
@DeveloperApi()
Source
GradientDescent.scala
Linear Supertypes
Serializable, Serializable, Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GradientDescent
  2. Serializable
  3. Serializable
  4. Logging
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  15. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  29. def runMiniBatchSGD(data: RDD[(Double, Vector)], gradient: Gradient, updater: Updater, stepSize: Double, numIterations: Int, regParam: Double, miniBatchFraction: Double, initialWeights: Vector): (Vector, Array[Double])

    Permalink

    Alias of runMiniBatchSGD with convergenceTol set to default value of 0.001.

  30. def runMiniBatchSGD(data: RDD[(Double, Vector)], gradient: Gradient, updater: Updater, stepSize: Double, numIterations: Int, regParam: Double, miniBatchFraction: Double, initialWeights: Vector, convergenceTol: Double): (Vector, Array[Double])

    Permalink

    Run stochastic gradient descent (SGD) in parallel using mini batches.

    Run stochastic gradient descent (SGD) in parallel using mini batches. In each iteration, we sample a subset (fraction miniBatchFraction) of the total data in order to compute a gradient estimate. Sampling, and averaging the subgradients over this subset is performed using one standard spark map-reduce in each iteration.

    data

    Input data for SGD. RDD of the set of data examples, each of the form (label, [feature values]).

    gradient

    Gradient object (used to compute the gradient of the loss function of one single data example)

    updater

    Updater function to actually perform a gradient step in a given direction.

    stepSize

    initial step size for the first step

    numIterations

    number of iterations that SGD should be run.

    regParam

    regularization parameter

    miniBatchFraction

    fraction of the input data set that should be used for one iteration of SGD. Default value 1.0.

    convergenceTol

    Minibatch iteration will end before numIterations if the relative difference between the current weight and the previous weight is less than this value. In measuring convergence, L2 norm is calculated. Default value 0.001. Must be between 0.0 and 1.0 inclusively.

    returns

    A tuple containing two elements. The first element is a column matrix containing weights for every feature, and the second element is an array containing the stochastic loss computed for every iteration.

  31. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  32. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped