(Scala-specific) Returns a new DataFrame
that drops rows containing less than
minNonNulls
non-null and non-NaN values in the specified columns.
(Scala-specific) Returns a new DataFrame
that drops rows containing less than
minNonNulls
non-null and non-NaN values in the specified columns.
1.3.1
Returns a new DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values in the specified columns.
Returns a new DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values in the specified columns.
1.3.1
Returns a new DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values.
Returns a new DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values.
1.3.1
(Scala-specific) Returns a new DataFrame
that drops rows containing null or NaN values
in the specified columns.
(Scala-specific) Returns a new DataFrame
that drops rows containing null or NaN values
in the specified columns.
If how
is "any", then drop rows containing any null or NaN values in the specified columns.
If how
is "all", then drop rows only if every specified column is null or NaN for that row.
1.3.1
Returns a new DataFrame
that drops rows containing null or NaN values
in the specified columns.
Returns a new DataFrame
that drops rows containing null or NaN values
in the specified columns.
If how
is "any", then drop rows containing any null or NaN values in the specified columns.
If how
is "all", then drop rows only if every specified column is null or NaN for that row.
1.3.1
(Scala-specific) Returns a new DataFrame
that drops rows containing any null or NaN values
in the specified columns.
(Scala-specific) Returns a new DataFrame
that drops rows containing any null or NaN values
in the specified columns.
1.3.1
Returns a new DataFrame
that drops rows containing any null or NaN values
in the specified columns.
Returns a new DataFrame
that drops rows containing any null or NaN values
in the specified columns.
1.3.1
Returns a new DataFrame
that drops rows containing null or NaN values.
Returns a new DataFrame
that drops rows containing null or NaN values.
If how
is "any", then drop rows containing any null or NaN values.
If how
is "all", then drop rows only if every column is null or NaN for that row.
1.3.1
Returns a new DataFrame
that drops rows containing any null or NaN values.
Returns a new DataFrame
that drops rows containing any null or NaN values.
1.3.1
(Scala-specific) Returns a new DataFrame
that replaces null values.
(Scala-specific) Returns a new DataFrame
that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type: Int
, Long
, Float
, Double
, String
, Boolean
.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 ))
1.3.1
Returns a new DataFrame
that replaces null values.
Returns a new DataFrame
that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type:
Integer
, Long
, Float
, Double
, String
, Boolean
.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
1.3.1
(Scala-specific) Returns a new DataFrame
that replaces null values in
specified string columns.
(Scala-specific) Returns a new DataFrame
that replaces null values in
specified string columns. If a specified column is not a string column, it is ignored.
1.3.1
Returns a new DataFrame
that replaces null values in specified string columns.
Returns a new DataFrame
that replaces null values in specified string columns.
If a specified column is not a string column, it is ignored.
1.3.1
(Scala-specific) Returns a new DataFrame
that replaces null or NaN values in specified
numeric columns.
(Scala-specific) Returns a new DataFrame
that replaces null or NaN values in specified
numeric columns. If a specified column is not a numeric column, it is ignored.
1.3.1
(Scala-specific) Returns a new DataFrame
that replaces null or NaN values in specified
numeric columns.
(Scala-specific) Returns a new DataFrame
that replaces null or NaN values in specified
numeric columns. If a specified column is not a numeric column, it is ignored.
2.2.0
Returns a new DataFrame
that replaces null or NaN values in specified numeric columns.
Returns a new DataFrame
that replaces null or NaN values in specified numeric columns.
If a specified column is not a numeric column, it is ignored.
1.3.1
Returns a new DataFrame
that replaces null or NaN values in specified numeric columns.
Returns a new DataFrame
that replaces null or NaN values in specified numeric columns.
If a specified column is not a numeric column, it is ignored.
2.2.0
Returns a new DataFrame
that replaces null values in string columns with value
.
Returns a new DataFrame
that replaces null values in string columns with value
.
1.3.1
Returns a new DataFrame
that replaces null or NaN values in numeric columns with value
.
Returns a new DataFrame
that replaces null or NaN values in numeric columns with value
.
1.3.1
Returns a new DataFrame
that replaces null or NaN values in numeric columns with value
.
Returns a new DataFrame
that replaces null or NaN values in numeric columns with value
.
2.2.0
(Scala-specific) Replaces values matching keys in replacement
map.
(Scala-specific) Replaces values matching keys in replacement
map.
Key and value of replacement
map must have the same type, and
can only be doubles , strings or booleans.
// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed"));
list of columns to apply the value replacement
value replacement map, as explained above
1.3.1
(Scala-specific) Replaces values matching keys in replacement
map.
(Scala-specific) Replaces values matching keys in replacement
map.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
If col
is "*",
then the replacement is applied on all string columns , numeric columns or boolean columns.
// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed"));
name of the column to apply the value replacement
value replacement map, as explained above
1.3.1
Replaces values matching keys in replacement
map with the corresponding values.
Replaces values matching keys in replacement
map with the corresponding values.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
list of columns to apply the value replacement
value replacement map, as explained above
1.3.1
Replaces values matching keys in replacement
map with the corresponding values.
Replaces values matching keys in replacement
map with the corresponding values.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
If col
is "*", then the replacement is applied on all string columns or numeric columns.
import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
name of the column to apply the value replacement
value replacement map, as explained above
1.3.1
Functionality for working with missing data in
DataFrame
s.1.3.1