Class/Object

org.apache.spark.ml.evaluation

RegressionEvaluator

Related Docs: object RegressionEvaluator | package evaluation

Permalink

final class RegressionEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with DefaultParamsWritable

:: Experimental :: Evaluator for regression, which expects two input columns: prediction and label.

Annotations
@Since( "1.4.0" ) @Experimental()
Source
RegressionEvaluator.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. RegressionEvaluator
  2. DefaultParamsWritable
  3. MLWritable
  4. HasLabelCol
  5. HasPredictionCol
  6. Evaluator
  7. Params
  8. Serializable
  9. Serializable
  10. Identifiable
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RegressionEvaluator()

    Permalink
    Annotations
    @Since( "1.4.0" )
  2. new RegressionEvaluator(uid: String)

    Permalink
    Annotations
    @Since( "1.4.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final def clear(param: Param[_]): RegressionEvaluator.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def copy(extra: ParamMap): RegressionEvaluator

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    RegressionEvaluatorEvaluatorParams
    Annotations
    @Since( "1.5.0" )
  9. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  10. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def evaluate(dataset: Dataset[_]): Double

    Permalink

    Evaluates model output and returns a scalar metric.

    Evaluates model output and returns a scalar metric. The value of isLargerBetter specifies whether larger values are better.

    dataset

    a dataset that contains labels/observations and predictions.

    returns

    metric

    Definition Classes
    RegressionEvaluatorEvaluator
    Annotations
    @Since( "2.0.0" )
  14. def evaluate(dataset: Dataset[_], paramMap: ParamMap): Double

    Permalink

    Evaluates model output and returns a scalar metric.

    Evaluates model output and returns a scalar metric. The value of isLargerBetter specifies whether larger values are better.

    dataset

    a dataset that contains labels/observations and predictions.

    paramMap

    parameter map that specifies the input columns and output metrics

    returns

    metric

    Definition Classes
    Evaluator
    Annotations
    @Since( "2.0.0" )
  15. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  16. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  17. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  18. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  19. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  20. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  23. final def getLabelCol: String

    Permalink

    Definition Classes
    HasLabelCol
  24. def getMetricName: String

    Permalink

    Annotations
    @Since( "1.4.0" )
  25. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  26. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  27. final def getPredictionCol: String

    Permalink

    Definition Classes
    HasPredictionCol
  28. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  29. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  30. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  31. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  32. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  33. def isLargerBetter: Boolean

    Permalink

    Indicates whether the metric returned by evaluate should be maximized (true, default) or minimized (false).

    Indicates whether the metric returned by evaluate should be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.

    Definition Classes
    RegressionEvaluatorEvaluator
    Annotations
    @Since( "1.4.0" )
  34. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  35. final val labelCol: Param[String]

    Permalink

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  36. val metricName: Param[String]

    Permalink

    Param for metric name in evaluation.

    Param for metric name in evaluation. Supports:

    • "rmse" (default): root mean squared error
    • "mse": mean squared error
    • "r2": R2 metric
    • "mae": mean absolute error
    Annotations
    @Since( "1.4.0" )
  37. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  38. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  39. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  40. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  41. final val predictionCol: Param[String]

    Permalink

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  42. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  43. final def set(paramPair: ParamPair[_]): RegressionEvaluator.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  44. final def set(param: String, value: Any): RegressionEvaluator.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  45. final def set[T](param: Param[T], value: T): RegressionEvaluator.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  46. final def setDefault(paramPairs: ParamPair[_]*): RegressionEvaluator.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  47. final def setDefault[T](param: Param[T], value: T): RegressionEvaluator.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  48. def setLabelCol(value: String): RegressionEvaluator.this.type

    Permalink

    Annotations
    @Since( "1.4.0" )
  49. def setMetricName(value: String): RegressionEvaluator.this.type

    Permalink

    Annotations
    @Since( "1.4.0" )
  50. def setPredictionCol(value: String): RegressionEvaluator.this.type

    Permalink

    Annotations
    @Since( "1.4.0" )
  51. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  52. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  53. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    RegressionEvaluatorIdentifiable
    Annotations
    @Since( "1.4.0" )
  54. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  55. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  56. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  57. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from HasLabelCol

Inherited from HasPredictionCol

Inherited from Evaluator

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters