Class

org.apache.spark.mllib.feature

Word2Vec

Related Doc: package feature

Permalink

class Word2Vec extends Serializable with Logging

Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.

We used skip-gram model in our implementation and hierarchical softmax method to train the model. The variable names in the implementation matches the original C implementation.

For original C implementation, see https://code.google.com/p/word2vec/ For research papers, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.

Annotations
@Since( "1.1.0" )
Source
Word2Vec.scala
Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Word2Vec
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Word2Vec()

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def fit[S <: Iterable[String]](dataset: JavaRDD[S]): Word2VecModel

    Permalink

    Computes the vector representation of each word in vocabulary (Java version).

    Computes the vector representation of each word in vocabulary (Java version).

    dataset

    a JavaRDD of words

    returns

    a Word2VecModel

    Annotations
    @Since( "1.1.0" )
  10. def fit[S <: Iterable[String]](dataset: RDD[S]): Word2VecModel

    Permalink

    Computes the vector representation of each word in vocabulary.

    Computes the vector representation of each word in vocabulary.

    dataset

    an RDD of sentences, each sentence is expressed as an iterable collection of words

    returns

    a Word2VecModel

    Annotations
    @Since( "1.1.0" )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  29. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  32. def setLearningRate(learningRate: Double): Word2Vec.this.type

    Permalink

    Sets initial learning rate (default: 0.025).

    Sets initial learning rate (default: 0.025).

    Annotations
    @Since( "1.1.0" )
  33. def setMaxSentenceLength(maxSentenceLength: Int): Word2Vec.this.type

    Permalink

    Sets the maximum length (in words) of each sentence in the input data.

    Sets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up to maxSentenceLength size (default: 1000)

    Annotations
    @Since( "2.0.0" )
  34. def setMinCount(minCount: Int): Word2Vec.this.type

    Permalink

    Sets minCount, the minimum number of times a token must appear to be included in the word2vec model's vocabulary (default: 5).

    Sets minCount, the minimum number of times a token must appear to be included in the word2vec model's vocabulary (default: 5).

    Annotations
    @Since( "1.3.0" )
  35. def setNumIterations(numIterations: Int): Word2Vec.this.type

    Permalink

    Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions.

    Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions.

    Annotations
    @Since( "1.1.0" )
  36. def setNumPartitions(numPartitions: Int): Word2Vec.this.type

    Permalink

    Sets number of partitions (default: 1).

    Sets number of partitions (default: 1). Use a small number for accuracy.

    Annotations
    @Since( "1.1.0" )
  37. def setSeed(seed: Long): Word2Vec.this.type

    Permalink

    Sets random seed (default: a random long integer).

    Sets random seed (default: a random long integer).

    Annotations
    @Since( "1.1.0" )
  38. def setVectorSize(vectorSize: Int): Word2Vec.this.type

    Permalink

    Sets vector size (default: 100).

    Sets vector size (default: 100).

    Annotations
    @Since( "1.1.0" )
  39. def setWindowSize(window: Int): Word2Vec.this.type

    Permalink

    Sets the window of words (default: 5)

    Sets the window of words (default: 5)

    Annotations
    @Since( "1.6.0" )
  40. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  41. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  42. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped