pyspark.pandas.window.Rolling.mean¶
-
Rolling.
mean
() → FrameLike[source]¶ Calculate the rolling mean of the values.
Note
the current implementation of this API uses Spark’s Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset.
- Returns
- Series or DataFrame
Returned object type is determined by the caller of the rolling calculation.
See also
Series.rolling
Calling object with Series data.
DataFrame.rolling
Calling object with DataFrames.
Series.mean
Equivalent method for Series.
DataFrame.mean
Equivalent method for DataFrame.
Examples
>>> s = ps.Series([4, 3, 5, 2, 6]) >>> s 0 4 1 3 2 5 3 2 4 6 dtype: int64
>>> s.rolling(2).mean() 0 NaN 1 3.5 2 4.0 3 3.5 4 4.0 dtype: float64
>>> s.rolling(3).mean() 0 NaN 1 NaN 2 4.000000 3 3.333333 4 4.333333 dtype: float64
For DataFrame, each rolling mean is computed column-wise.
>>> df = ps.DataFrame({"A": s.to_numpy(), "B": s.to_numpy() ** 2}) >>> df A B 0 4 16 1 3 9 2 5 25 3 2 4 4 6 36
>>> df.rolling(2).mean() A B 0 NaN NaN 1 3.5 12.5 2 4.0 17.0 3 3.5 14.5 4 4.0 20.0
>>> df.rolling(3).mean() A B 0 NaN NaN 1 NaN NaN 2 4.000000 16.666667 3 3.333333 12.666667 4 4.333333 21.666667