public class LinearRegressionWithSGD extends GeneralizedLinearAlgorithm<LinearRegressionModel> implements scala.Serializable
| Constructor and Description |
|---|
LinearRegressionWithSGD()
Construct a LinearRegression object with default parameters: {stepSize: 1.0,
numIterations: 100, miniBatchFraction: 1.0}.
|
| Modifier and Type | Method and Description |
|---|---|
GradientDescent |
optimizer()
The optimizer to solve the problem.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize,
double miniBatchFraction)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize,
double miniBatchFraction,
Vector initialWeights)
Train a Linear Regression model given an RDD of (label, features) pairs.
|
run, run, setIntercept, setValidateDataequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitinitialized, initializeIfNecessary, initializeLogging, initLock, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic LinearRegressionWithSGD()
public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize, double miniBatchFraction, Vector initialWeights)
miniBatchFraction fraction of the data to calculate a stochastic gradient. The weights used
in gradient descent are initialized using the initial weights provided.
input - RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations - Number of iterations of gradient descent to run.stepSize - Step size to be used for each iteration of gradient descent.miniBatchFraction - Fraction of data to be used per iteration.initialWeights - Initial set of weights to be used. Array should be equal in size to
the number of features in the data.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize, double miniBatchFraction)
miniBatchFraction fraction of the data to calculate a stochastic gradient.
input - RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations - Number of iterations of gradient descent to run.stepSize - Step size to be used for each iteration of gradient descent.miniBatchFraction - Fraction of data to be used per iteration.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize)
input - RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ystepSize - Step size to be used for each iteration of Gradient Descent.numIterations - Number of iterations of gradient descent to run.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations)
input - RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations - Number of iterations of gradient descent to run.public GradientDescent optimizer()
GeneralizedLinearAlgorithmoptimizer in class GeneralizedLinearAlgorithm<LinearRegressionModel>