public final class DecisionTreeRegressor extends Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>
Decision tree learning algorithm
for regression.
It supports both continuous and categorical features.| Constructor and Description |
|---|
DecisionTreeRegressor() |
DecisionTreeRegressor(String uid) |
| Modifier and Type | Method and Description |
|---|---|
DecisionTreeRegressor |
setCacheNodeIds(boolean value) |
DecisionTreeRegressor |
setCheckpointInterval(int value) |
DecisionTreeRegressor |
setImpurity(String value) |
DecisionTreeRegressor |
setMaxBins(int value) |
DecisionTreeRegressor |
setMaxDepth(int value) |
DecisionTreeRegressor |
setMaxMemoryInMB(int value) |
DecisionTreeRegressor |
setMinInfoGain(double value) |
DecisionTreeRegressor |
setMinInstancesPerNode(int value) |
static String[] |
supportedImpurities()
Accessor for supported impurities: variance
|
String |
uid() |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
copy, fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchemaequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParamsinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic DecisionTreeRegressor(String uid)
public DecisionTreeRegressor()
public static final String[] supportedImpurities()
public String uid()
public DecisionTreeRegressor setMaxDepth(int value)
public DecisionTreeRegressor setMaxBins(int value)
public DecisionTreeRegressor setMinInstancesPerNode(int value)
public DecisionTreeRegressor setMinInfoGain(double value)
public DecisionTreeRegressor setMaxMemoryInMB(int value)
public DecisionTreeRegressor setCacheNodeIds(boolean value)
public DecisionTreeRegressor setCheckpointInterval(int value)
public DecisionTreeRegressor setImpurity(String value)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.