public final class DecisionTreeClassificationModel extends ProbabilisticClassificationModel<Vector,DecisionTreeClassificationModel> implements scala.Serializable
Decision tree
model for classification.
It supports both binary and multiclass labels, as well as both continuous and categorical
features.Modifier and Type | Method and Description |
---|---|
DecisionTreeClassificationModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static DecisionTreeClassificationModel |
fromOld(DecisionTreeModel oldModel,
DecisionTreeClassifier parent,
scala.collection.immutable.Map<java.lang.Object,java.lang.Object> categoricalFeatures)
(private[ml]) Convert a model from the old API
|
int |
numClasses()
Number of classes (values which the label can take).
|
protected double |
predict(Vector features)
Predict label for the given features.
|
protected Vector |
predictRaw(Vector features)
Raw prediction for each possible label.
|
protected Vector |
raw2probabilityInPlace(Vector rawPrediction)
Estimate the probability of each class given the raw prediction,
doing the computation in-place.
|
Node |
rootNode() |
java.lang.String |
toString() |
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
normalizeToProbabilitiesInPlace, predictProbability, probability2prediction, raw2prediction, raw2probability, setProbabilityCol, setThresholds, transform
setRawPredictionCol
featuresDataType, setFeaturesCol, setPredictionCol, transformImpl, transformSchema
transform, transform, transform
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static DecisionTreeClassificationModel fromOld(DecisionTreeModel oldModel, DecisionTreeClassifier parent, scala.collection.immutable.Map<java.lang.Object,java.lang.Object> categoricalFeatures)
public java.lang.String uid()
Identifiable
uid
in interface Identifiable
public Node rootNode()
public int numClasses()
ClassificationModel
numClasses
in class ClassificationModel<Vector,DecisionTreeClassificationModel>
protected double predict(Vector features)
ClassificationModel
transform()
and output predictionCol
.
This default implementation for classification predicts the index of the maximum value
from predictRaw()
.
predict
in class ClassificationModel<Vector,DecisionTreeClassificationModel>
features
- (undocumented)protected Vector predictRaw(Vector features)
ClassificationModel
transform()
and output rawPredictionCol
.
predictRaw
in class ClassificationModel<Vector,DecisionTreeClassificationModel>
features
- (undocumented)protected Vector raw2probabilityInPlace(Vector rawPrediction)
ProbabilisticClassificationModel
This internal method is used to implement transform()
and output probabilityCol
.
raw2probabilityInPlace
in class ProbabilisticClassificationModel<Vector,DecisionTreeClassificationModel>
rawPrediction
- (undocumented)public DecisionTreeClassificationModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<DecisionTreeClassificationModel>
extra
- (undocumented)defaultCopy()
public java.lang.String toString()
toString
in interface Identifiable
toString
in class java.lang.Object
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.