public final class DecisionTreeClassificationModel extends ProbabilisticClassificationModel<Vector,DecisionTreeClassificationModel> implements scala.Serializable
Decision tree model for classification.
It supports both binary and multiclass labels, as well as both continuous and categorical
features.| Modifier and Type | Method and Description |
|---|---|
DecisionTreeClassificationModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static DecisionTreeClassificationModel |
fromOld(DecisionTreeModel oldModel,
DecisionTreeClassifier parent,
scala.collection.immutable.Map<java.lang.Object,java.lang.Object> categoricalFeatures)
(private[ml]) Convert a model from the old API
|
int |
numClasses()
Number of classes (values which the label can take).
|
protected double |
predict(Vector features)
Predict label for the given features.
|
protected Vector |
predictRaw(Vector features)
Raw prediction for each possible label.
|
protected Vector |
raw2probabilityInPlace(Vector rawPrediction)
Estimate the probability of each class given the raw prediction,
doing the computation in-place.
|
Node |
rootNode() |
java.lang.String |
toString() |
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
normalizeToProbabilitiesInPlace, predictProbability, probability2prediction, raw2prediction, raw2probability, setProbabilityCol, setThresholds, transformsetRawPredictionColfeaturesDataType, setFeaturesCol, setPredictionCol, transformImpl, transformSchematransform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamsinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static DecisionTreeClassificationModel fromOld(DecisionTreeModel oldModel, DecisionTreeClassifier parent, scala.collection.immutable.Map<java.lang.Object,java.lang.Object> categoricalFeatures)
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic Node rootNode()
public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,DecisionTreeClassificationModel>protected double predict(Vector features)
ClassificationModeltransform() and output predictionCol.
This default implementation for classification predicts the index of the maximum value
from predictRaw().
predict in class ClassificationModel<Vector,DecisionTreeClassificationModel>features - (undocumented)protected Vector predictRaw(Vector features)
ClassificationModeltransform() and output rawPredictionCol.
predictRaw in class ClassificationModel<Vector,DecisionTreeClassificationModel>features - (undocumented)protected Vector raw2probabilityInPlace(Vector rawPrediction)
ProbabilisticClassificationModel
This internal method is used to implement transform() and output probabilityCol.
raw2probabilityInPlace in class ProbabilisticClassificationModel<Vector,DecisionTreeClassificationModel>rawPrediction - (undocumented)public DecisionTreeClassificationModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<DecisionTreeClassificationModel>extra - (undocumented)defaultCopy()public java.lang.String toString()
toString in interface IdentifiabletoString in class java.lang.Objectpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.