public class VectorIndexerModel extends Model<VectorIndexerModel> implements MLWritable
This maintains vector sparsity.
param: numFeatures Number of features, i.e., length of Vectors which this transforms param: categoryMaps Feature value index. Keys are categorical feature indices (column indices). Values are maps from original features values to 0-based category indices. If a feature is not in this map, it is treated as continuous.
| Modifier and Type | Method and Description |
|---|---|
scala.collection.immutable.Map<java.lang.Object,scala.collection.immutable.Map<java.lang.Object,java.lang.Object>> |
categoryMaps() |
VectorIndexerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
int |
getMaxCategories() |
java.util.Map<java.lang.Integer,java.util.Map<java.lang.Double,java.lang.Integer>> |
javaCategoryMaps()
Java-friendly version of
categoryMaps |
static VectorIndexerModel |
load(java.lang.String path) |
IntParam |
maxCategories()
Threshold for the number of values a categorical feature can take.
|
int |
numFeatures() |
static MLReader<VectorIndexerModel> |
read() |
VectorIndexerModel |
setInputCol(java.lang.String value) |
VectorIndexerModel |
setOutputCol(java.lang.String value) |
DataFrame |
transform(DataFrame dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringsaveinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<VectorIndexerModel> read()
public static VectorIndexerModel load(java.lang.String path)
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic int numFeatures()
public scala.collection.immutable.Map<java.lang.Object,scala.collection.immutable.Map<java.lang.Object,java.lang.Object>> categoryMaps()
public java.util.Map<java.lang.Integer,java.util.Map<java.lang.Double,java.lang.Integer>> javaCategoryMaps()
categoryMapspublic VectorIndexerModel setInputCol(java.lang.String value)
public VectorIndexerModel setOutputCol(java.lang.String value)
public DataFrame transform(DataFrame dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageDerives the output schema from the input schema.
transformSchema in class PipelineStageschema - (undocumented)public VectorIndexerModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<VectorIndexerModel>extra - (undocumented)defaultCopy()public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic IntParam maxCategories()
(default = 20)
public int getMaxCategories()