public class IsotonicRegressionModel extends Model<IsotonicRegressionModel> implements MLWritable
For detailed rules see org.apache.spark.mllib.regression.IsotonicRegressionModel.predict().
param: oldModel A IsotonicRegressionModel
model trained by IsotonicRegression.
| Modifier and Type | Method and Description |
|---|---|
Vector |
boundaries()
Boundaries in increasing order for which predictions are known.
|
IsotonicRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
RDD<scala.Tuple3<java.lang.Object,java.lang.Object,java.lang.Object>> |
extractWeightedLabeledPoints(DataFrame dataset)
Extracts (label, feature, weight) from input dataset.
|
IntParam |
featureIndex()
Param for the index of the feature if
featuresCol is a vector column (default: 0), no
effect otherwise. |
int |
getFeatureIndex() |
boolean |
getIsotonic() |
boolean |
hasWeightCol()
Checks whether the input has weight column.
|
BooleanParam |
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
antitonic/decreasing (false).
|
static IsotonicRegressionModel |
load(java.lang.String path) |
Vector |
predictions()
Predictions associated with the boundaries at the same index, monotone because of isotonic
regression.
|
static MLReader<IsotonicRegressionModel> |
read() |
IsotonicRegressionModel |
setFeatureIndex(int value) |
IsotonicRegressionModel |
setFeaturesCol(java.lang.String value) |
IsotonicRegressionModel |
setPredictionCol(java.lang.String value) |
DataFrame |
transform(DataFrame dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting) |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningsavepublic static MLReader<IsotonicRegressionModel> read()
public static IsotonicRegressionModel load(java.lang.String path)
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic IsotonicRegressionModel setFeaturesCol(java.lang.String value)
public IsotonicRegressionModel setPredictionCol(java.lang.String value)
public IsotonicRegressionModel setFeatureIndex(int value)
public Vector boundaries()
public Vector predictions()
public IsotonicRegressionModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<IsotonicRegressionModel>extra - (undocumented)defaultCopy()public DataFrame transform(DataFrame dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageDerives the output schema from the input schema.
transformSchema in class PipelineStageschema - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic BooleanParam isotonic()
public boolean getIsotonic()
public IntParam featureIndex()
featuresCol is a vector column (default: 0), no
effect otherwise.public int getFeatureIndex()
public boolean hasWeightCol()
public RDD<scala.Tuple3<java.lang.Object,java.lang.Object,java.lang.Object>> extractWeightedLabeledPoints(DataFrame dataset)
dataset - (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting)