public class IsotonicRegressionModel extends Model<IsotonicRegressionModel> implements MLWritable
For detailed rules see org.apache.spark.mllib.regression.IsotonicRegressionModel.predict()
.
param: oldModel A IsotonicRegressionModel
model trained by IsotonicRegression
.
Modifier and Type | Method and Description |
---|---|
Vector |
boundaries()
Boundaries in increasing order for which predictions are known.
|
IsotonicRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
RDD<scala.Tuple3<java.lang.Object,java.lang.Object,java.lang.Object>> |
extractWeightedLabeledPoints(DataFrame dataset)
Extracts (label, feature, weight) from input dataset.
|
IntParam |
featureIndex()
Param for the index of the feature if
featuresCol is a vector column (default: 0 ), no
effect otherwise. |
int |
getFeatureIndex() |
boolean |
getIsotonic() |
boolean |
hasWeightCol()
Checks whether the input has weight column.
|
BooleanParam |
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
antitonic/decreasing (false).
|
static IsotonicRegressionModel |
load(java.lang.String path) |
Vector |
predictions()
Predictions associated with the boundaries at the same index, monotone because of isotonic
regression.
|
static MLReader<IsotonicRegressionModel> |
read() |
IsotonicRegressionModel |
setFeatureIndex(int value) |
IsotonicRegressionModel |
setFeaturesCol(java.lang.String value) |
IsotonicRegressionModel |
setPredictionCol(java.lang.String value) |
DataFrame |
transform(DataFrame dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting) |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
save
public static MLReader<IsotonicRegressionModel> read()
public static IsotonicRegressionModel load(java.lang.String path)
public java.lang.String uid()
Identifiable
uid
in interface Identifiable
public IsotonicRegressionModel setFeaturesCol(java.lang.String value)
public IsotonicRegressionModel setPredictionCol(java.lang.String value)
public IsotonicRegressionModel setFeatureIndex(int value)
public Vector boundaries()
public Vector predictions()
public IsotonicRegressionModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<IsotonicRegressionModel>
extra
- (undocumented)defaultCopy()
public DataFrame transform(DataFrame dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public BooleanParam isotonic()
public boolean getIsotonic()
public IntParam featureIndex()
featuresCol
is a vector column (default: 0
), no
effect otherwise.public int getFeatureIndex()
public boolean hasWeightCol()
public RDD<scala.Tuple3<java.lang.Object,java.lang.Object,java.lang.Object>> extractWeightedLabeledPoints(DataFrame dataset)
dataset
- (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting)