public class AFTSurvivalRegressionModel extends Model<AFTSurvivalRegressionModel> implements MLWritable
AFTSurvivalRegression
.Modifier and Type | Method and Description |
---|---|
Param<String> |
censorCol()
Param for censor column name.
|
Vector |
coefficients() |
AFTSurvivalRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
String |
getCensorCol() |
double[] |
getQuantileProbabilities() |
String |
getQuantilesCol() |
boolean |
hasQuantilesCol()
Checks whether the input has quantiles column name.
|
double |
intercept() |
static AFTSurvivalRegressionModel |
load(String path) |
double |
predict(Vector features) |
Vector |
predictQuantiles(Vector features) |
DoubleArrayParam |
quantileProbabilities()
Param for quantile probabilities array.
|
Param<String> |
quantilesCol()
Param for quantiles column name.
|
static MLReader<AFTSurvivalRegressionModel> |
read() |
double |
scale() |
AFTSurvivalRegressionModel |
setFeaturesCol(String value) |
AFTSurvivalRegressionModel |
setPredictionCol(String value) |
AFTSurvivalRegressionModel |
setQuantileProbabilities(double[] value) |
AFTSurvivalRegressionModel |
setQuantilesCol(String value) |
DataFrame |
transform(DataFrame dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting)
Validates and transforms the input schema with the provided param map.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
save
public static MLReader<AFTSurvivalRegressionModel> read()
public static AFTSurvivalRegressionModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public Vector coefficients()
public double intercept()
public double scale()
public AFTSurvivalRegressionModel setFeaturesCol(String value)
public AFTSurvivalRegressionModel setPredictionCol(String value)
public AFTSurvivalRegressionModel setQuantileProbabilities(double[] value)
public AFTSurvivalRegressionModel setQuantilesCol(String value)
public double predict(Vector features)
public DataFrame transform(DataFrame dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)public AFTSurvivalRegressionModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<AFTSurvivalRegressionModel>
extra
- (undocumented)defaultCopy()
public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public Param<String> censorCol()
public String getCensorCol()
public DoubleArrayParam quantileProbabilities()
public double[] getQuantileProbabilities()
public Param<String> quantilesCol()
public String getQuantilesCol()
public boolean hasQuantilesCol()
public StructType validateAndTransformSchema(StructType schema, boolean fitting)
schema
- input schemafitting
- whether this is in fitting or prediction