public final class DataFrameNaFunctions
extends Object
DataFrame
s.
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
drop()
Returns a new
DataFrame that drops rows containing any null or NaN values. |
Dataset<Row> |
drop(int minNonNulls)
Returns a new
DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values. |
Dataset<Row> |
drop(int minNonNulls,
scala.collection.Seq<String> cols)
(Scala-specific) Returns a new
DataFrame that drops rows containing less than
minNonNulls non-null and non-NaN values in the specified columns. |
Dataset<Row> |
drop(int minNonNulls,
String[] cols)
Returns a new
DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values in the specified columns. |
Dataset<Row> |
drop(scala.collection.Seq<String> cols)
(Scala-specific) Returns a new
DataFrame that drops rows containing any null or NaN values
in the specified columns. |
Dataset<Row> |
drop(String how)
Returns a new
DataFrame that drops rows containing null or NaN values. |
Dataset<Row> |
drop(String[] cols)
Returns a new
DataFrame that drops rows containing any null or NaN values
in the specified columns. |
Dataset<Row> |
drop(String how,
scala.collection.Seq<String> cols)
(Scala-specific) Returns a new
DataFrame that drops rows containing null or NaN values
in the specified columns. |
Dataset<Row> |
drop(String how,
String[] cols)
Returns a new
DataFrame that drops rows containing null or NaN values
in the specified columns. |
Dataset<Row> |
fill(double value)
Returns a new
DataFrame that replaces null or NaN values in numeric columns with value . |
Dataset<Row> |
fill(double value,
scala.collection.Seq<String> cols)
(Scala-specific) Returns a new
DataFrame that replaces null or NaN values in specified
numeric columns. |
Dataset<Row> |
fill(double value,
String[] cols)
Returns a new
DataFrame that replaces null or NaN values in specified numeric columns. |
Dataset<Row> |
fill(java.util.Map<String,Object> valueMap)
Returns a new
DataFrame that replaces null values. |
Dataset<Row> |
fill(scala.collection.immutable.Map<String,Object> valueMap)
(Scala-specific) Returns a new
DataFrame that replaces null values. |
Dataset<Row> |
fill(String value)
Returns a new
DataFrame that replaces null values in string columns with value . |
Dataset<Row> |
fill(String value,
scala.collection.Seq<String> cols)
(Scala-specific) Returns a new
DataFrame that replaces null values in
specified string columns. |
Dataset<Row> |
fill(String value,
String[] cols)
Returns a new
DataFrame that replaces null values in specified string columns. |
<T> Dataset<Row> |
replace(scala.collection.Seq<String> cols,
scala.collection.immutable.Map<T,T> replacement)
(Scala-specific) Replaces values matching keys in
replacement map. |
<T> Dataset<Row> |
replace(String[] cols,
java.util.Map<T,T> replacement)
Replaces values matching keys in
replacement map with the corresponding values. |
<T> Dataset<Row> |
replace(String col,
java.util.Map<T,T> replacement)
Replaces values matching keys in
replacement map with the corresponding values. |
<T> Dataset<Row> |
replace(String col,
scala.collection.immutable.Map<T,T> replacement)
(Scala-specific) Replaces values matching keys in
replacement map. |
public Dataset<Row> drop()
DataFrame
that drops rows containing any null or NaN values.
public Dataset<Row> drop(String how)
DataFrame
that drops rows containing null or NaN values.
If how
is "any", then drop rows containing any null or NaN values.
If how
is "all", then drop rows only if every column is null or NaN for that row.
how
- (undocumented)public Dataset<Row> drop(String[] cols)
DataFrame
that drops rows containing any null or NaN values
in the specified columns.
cols
- (undocumented)public Dataset<Row> drop(scala.collection.Seq<String> cols)
DataFrame
that drops rows containing any null or NaN values
in the specified columns.
cols
- (undocumented)public Dataset<Row> drop(String how, String[] cols)
DataFrame
that drops rows containing null or NaN values
in the specified columns.
If how
is "any", then drop rows containing any null or NaN values in the specified columns.
If how
is "all", then drop rows only if every specified column is null or NaN for that row.
how
- (undocumented)cols
- (undocumented)public Dataset<Row> drop(String how, scala.collection.Seq<String> cols)
DataFrame
that drops rows containing null or NaN values
in the specified columns.
If how
is "any", then drop rows containing any null or NaN values in the specified columns.
If how
is "all", then drop rows only if every specified column is null or NaN for that row.
how
- (undocumented)cols
- (undocumented)public Dataset<Row> drop(int minNonNulls)
DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values.
minNonNulls
- (undocumented)public Dataset<Row> drop(int minNonNulls, String[] cols)
DataFrame
that drops rows containing
less than minNonNulls
non-null and non-NaN values in the specified columns.
minNonNulls
- (undocumented)cols
- (undocumented)public Dataset<Row> drop(int minNonNulls, scala.collection.Seq<String> cols)
DataFrame
that drops rows containing less than
minNonNulls
non-null and non-NaN values in the specified columns.
minNonNulls
- (undocumented)cols
- (undocumented)public Dataset<Row> fill(double value)
DataFrame
that replaces null or NaN values in numeric columns with value
.
value
- (undocumented)public Dataset<Row> fill(String value)
DataFrame
that replaces null values in string columns with value
.
value
- (undocumented)public Dataset<Row> fill(double value, String[] cols)
DataFrame
that replaces null or NaN values in specified numeric columns.
If a specified column is not a numeric column, it is ignored.
value
- (undocumented)cols
- (undocumented)public Dataset<Row> fill(double value, scala.collection.Seq<String> cols)
DataFrame
that replaces null or NaN values in specified
numeric columns. If a specified column is not a numeric column, it is ignored.
value
- (undocumented)cols
- (undocumented)public Dataset<Row> fill(String value, String[] cols)
DataFrame
that replaces null values in specified string columns.
If a specified column is not a string column, it is ignored.
value
- (undocumented)cols
- (undocumented)public Dataset<Row> fill(String value, scala.collection.Seq<String> cols)
DataFrame
that replaces null values in
specified string columns. If a specified column is not a string column, it is ignored.
value
- (undocumented)cols
- (undocumented)public Dataset<Row> fill(java.util.Map<String,Object> valueMap)
DataFrame
that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type:
Integer
, Long
, Float
, Double
, String
, Boolean
.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap;
df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
valueMap
- (undocumented)public Dataset<Row> fill(scala.collection.immutable.Map<String,Object> valueMap)
DataFrame
that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type: Int
, Long
, Float
, Double
, String
, Boolean
.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map(
"A" -> "unknown",
"B" -> 1.0
))
valueMap
- (undocumented)public <T> Dataset<Row> replace(String col, java.util.Map<T,T> replacement)
replacement
map with the corresponding values.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
If col
is "*", then the replacement is applied on all string columns or numeric columns.
import com.google.common.collect.ImmutableMap;
// Replaces all occurrences of 1.0 with 2.0 in column "height".
df.replace("height", ImmutableMap.of(1.0, 2.0));
// Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name".
df.replace("name", ImmutableMap.of("UNKNOWN", "unnamed"));
// Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns.
df.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
col
- name of the column to apply the value replacementreplacement
- value replacement map, as explained above
public <T> Dataset<Row> replace(String[] cols, java.util.Map<T,T> replacement)
replacement
map with the corresponding values.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
import com.google.common.collect.ImmutableMap;
// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight".
df.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0));
// Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname".
df.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
cols
- list of columns to apply the value replacementreplacement
- value replacement map, as explained above
public <T> Dataset<Row> replace(String col, scala.collection.immutable.Map<T,T> replacement)
replacement
map.
Key and value of replacement
map must have the same type, and
can only be doubles, strings or booleans.
If col
is "*",
then the replacement is applied on all string columns , numeric columns or boolean columns.
// Replaces all occurrences of 1.0 with 2.0 in column "height".
df.replace("height", Map(1.0 -> 2.0))
// Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name".
df.replace("name", Map("UNKNOWN" -> "unnamed")
// Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns.
df.replace("*", Map("UNKNOWN" -> "unnamed")
col
- name of the column to apply the value replacementreplacement
- value replacement map, as explained above
public <T> Dataset<Row> replace(scala.collection.Seq<String> cols, scala.collection.immutable.Map<T,T> replacement)
replacement
map.
Key and value of replacement
map must have the same type, and
can only be doubles , strings or booleans.
// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight".
df.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0));
// Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname".
df.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed");
cols
- list of columns to apply the value replacementreplacement
- value replacement map, as explained above