FeaturesType
- Type of input features. E.g., Vector
M
- Concrete Model typepublic abstract class ClassificationModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>> extends PredictionModel<FeaturesType,M>
Model produced by a Classifier
.
Classes are indexed {0, 1, ..., numClasses - 1}.
Constructor and Description |
---|
ClassificationModel() |
Modifier and Type | Method and Description |
---|---|
abstract int |
numClasses()
Number of classes (values which the label can take).
|
double |
predict(FeaturesType features)
Predict label for the given features.
|
M |
setRawPredictionCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms dataset by reading from
featuresCol , and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector . |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
numFeatures, setFeaturesCol, setPredictionCol, transformSchema
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getRawPredictionCol, rawPredictionCol
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString, uid
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public abstract int numClasses()
public double predict(FeaturesType features)
transform()
and output predictionCol
.
This default implementation for classification predicts the index of the maximum value
from predictRaw()
.
predict
in class PredictionModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>
features
- (undocumented)public M setRawPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
featuresCol
, and appending new columns as specified by
parameters:
- predicted labels as predictionCol
of type Double
- raw predictions (confidences) as rawPredictionCol
of type Vector
.
transform
in class PredictionModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>
dataset
- input datasetpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.