public class EigenValueDecomposition
extends Object
| Constructor and Description |
|---|
EigenValueDecomposition() |
| Modifier and Type | Method and Description |
|---|---|
static scala.Tuple2<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseMatrix<Object>> |
symmetricEigs(scala.Function1<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseVector<Object>> mul,
int n,
int k,
double tol,
int maxIterations)
Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK.
|
public static scala.Tuple2<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseMatrix<Object>> symmetricEigs(scala.Function1<breeze.linalg.DenseVector<Object>,breeze.linalg.DenseVector<Object>> mul,
int n,
int k,
double tol,
int maxIterations)
n*(4*k+4) doubles.
mul - a function that multiplies the symmetric matrix with a DenseVector.n - dimension of the square matrix (maximum Int.MaxValue).k - number of leading eigenvalues required, where k must be positive and less than n.tol - tolerance of the eigs computation.maxIterations - the maximum number of Arnoldi update iterations.