public interface TopologyModel
extends scala.Serializable
| Modifier and Type | Method and Description |
|---|---|
double |
computeGradient(breeze.linalg.DenseMatrix<Object> data,
breeze.linalg.DenseMatrix<Object> target,
Vector cumGradient,
int blockSize)
Computes gradient for the network
|
breeze.linalg.DenseMatrix<Object>[] |
forward(breeze.linalg.DenseMatrix<Object> data,
boolean includeLastLayer)
Forward propagation
|
LayerModel[] |
layerModels()
Array of layer models
|
Layer[] |
layers()
Array of layers
|
Vector |
predict(Vector features)
Prediction of the model.
|
Vector |
predictRaw(Vector features)
Raw prediction of the model.
|
Vector |
raw2ProbabilityInPlace(Vector rawPrediction)
Probability of the model.
|
Vector |
weights() |
double computeGradient(breeze.linalg.DenseMatrix<Object> data,
breeze.linalg.DenseMatrix<Object> target,
Vector cumGradient,
int blockSize)
data - input datatarget - target outputcumGradient - cumulative gradientblockSize - block sizebreeze.linalg.DenseMatrix<Object>[] forward(breeze.linalg.DenseMatrix<Object> data,
boolean includeLastLayer)
data - input dataincludeLastLayer - Include the last layer in the output. In
MultilayerPerceptronClassifier, the last layer is always softmax;
the last layer of outputs is needed for class predictions, but not
for rawPrediction.
LayerModel[] layerModels()
Layer[] layers()
Vector predict(Vector features)
ProbabilisticClassificationModel
features - input featuresVector predictRaw(Vector features)
ProbabilisticClassificationModel
features - input featuresNote: This interface is only used for classification Model.
Vector raw2ProbabilityInPlace(Vector rawPrediction)
ProbabilisticClassificationModel
rawPrediction - raw prediction vectorNote: This interface is only used for classification Model.
Vector weights()