public class FPGrowthModel extends Model<FPGrowthModel> implements FPGrowthParams, MLWritable
param: freqItemsets frequent itemsets in the format of DataFrame("items"[Array], "freq"[Long])
| Modifier and Type | Method and Description |
|---|---|
Dataset<Row> |
associationRules()
Get association rules fitted using the minConfidence.
|
FPGrowthModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Dataset<Row> |
freqItemsets() |
static FPGrowthModel |
load(String path) |
static MLReader<FPGrowthModel> |
read() |
FPGrowthModel |
setItemsCol(String value) |
FPGrowthModel |
setMinConfidence(double value) |
FPGrowthModel |
setPredictionCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
The transform method first generates the association rules according to the frequent itemsets.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetItemsCol, getMinConfidence, getMinSupport, getNumPartitions, itemsCol, minConfidence, minSupport, numPartitions, validateAndTransformSchemagetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringsaveinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<FPGrowthModel> read()
public static FPGrowthModel load(String path)
public String uid()
Identifiableuid in interface Identifiablepublic FPGrowthModel setMinConfidence(double value)
public FPGrowthModel setItemsCol(String value)
public FPGrowthModel setPredictionCol(String value)
public Dataset<Row> associationRules()
public Dataset<Row> transform(Dataset<?> dataset)
transform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public FPGrowthModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<FPGrowthModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritable