class LogisticRegression extends ProbabilisticClassifier[Vector, LogisticRegression, LogisticRegressionModel] with LogisticRegressionParams with DefaultParamsWritable with Logging
Logistic regression. Supports:
- Multinomial logistic (softmax) regression.
- Binomial logistic regression.
This class supports fitting traditional logistic regression model by LBFGS/OWLQN and bound (box) constrained logistic regression model by LBFGSB.
- Annotations
- @Since( "1.2.0" )
- Source
- LogisticRegression.scala
- Grouped
- Alphabetic
- By Inheritance
- LogisticRegression
- DefaultParamsWritable
- MLWritable
- LogisticRegressionParams
- HasAggregationDepth
- HasThreshold
- HasWeightCol
- HasStandardization
- HasTol
- HasFitIntercept
- HasMaxIter
- HasElasticNetParam
- HasRegParam
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
val
aggregationDepth: IntParam
Param for suggested depth for treeAggregate (>= 2).
Param for suggested depth for treeAggregate (>= 2).
- Definition Classes
- HasAggregationDepth
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
checkThresholdConsistency(): Unit
If
threshold
andthresholds
are both set, ensures they are consistent.If
threshold
andthresholds
are both set, ensures they are consistent.- Attributes
- protected
- Definition Classes
- LogisticRegressionParams
- Exceptions thrown
IllegalArgumentException
ifthreshold
andthresholds
are not equivalent
-
final
def
clear(param: Param[_]): LogisticRegression.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): LogisticRegression
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- LogisticRegression → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since( "1.4.0" )
-
def
copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
-
final
val
elasticNetParam: DoubleParam
Param for the ElasticNet mixing parameter, in range [0, 1].
Param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.
- Definition Classes
- HasElasticNetParam
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
def
extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validates the label on the classifier is a valid integer in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- ClassifierParams
-
def
extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validate the output instances with the given function.
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractInstances(dataset: Dataset[_]): RDD[Instance]
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint]
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
- dataset
DataFrame with columns for labels (org.apache.spark.sql.types.NumericType) and features (
Vector
).- numClasses
Number of classes label can take. Labels must be integers in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- Classifier
- Note
Throws
SparkException
if any label is a non-integer or is negative
-
def
extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
val
family: Param[String]
Param for the name of family which is a description of the label distribution to be used in the model.
Param for the name of family which is a description of the label distribution to be used in the model. Supported options:
- "auto": Automatically select the family based on the number of classes: If numClasses == 1 || numClasses == 2, set to "binomial". Else, set to "multinomial"
- "binomial": Binary logistic regression with pivoting.
- "multinomial": Multinomial logistic (softmax) regression without pivoting. Default is "auto".
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.1.0" )
-
final
val
featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit(dataset: Dataset[_]): LogisticRegressionModel
Fits a model to the input data.
-
def
fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[LogisticRegressionModel]
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
input dataset
- paramMaps
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted models, matching the input parameter maps
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): LogisticRegressionModel
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
input dataset
- paramMap
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): LogisticRegressionModel
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
input dataset
- firstParamPair
the first param pair, overrides embedded params
- otherParamPairs
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
val
fitIntercept: BooleanParam
Param for whether to fit an intercept term.
Param for whether to fit an intercept term.
- Definition Classes
- HasFitIntercept
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getAggregationDepth: Int
- Definition Classes
- HasAggregationDepth
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
final
def
getElasticNetParam: Double
- Definition Classes
- HasElasticNetParam
-
def
getFamily: String
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.1.0" )
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getFitIntercept: Boolean
- Definition Classes
- HasFitIntercept
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
def
getLowerBoundsOnCoefficients: Matrix
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
def
getLowerBoundsOnIntercepts: Vector
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
final
def
getMaxIter: Int
- Definition Classes
- HasMaxIter
-
def
getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
Get the number of classes.
Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value.
Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in
extractLabeledPoints()
.- dataset
Dataset which contains a column labelCol
- maxNumClasses
Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored.
- returns
number of classes
- Attributes
- protected
- Definition Classes
- Classifier
- Exceptions thrown
IllegalArgumentException
if metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
-
final
def
getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
-
final
def
getRegParam: Double
- Definition Classes
- HasRegParam
-
final
def
getStandardization: Boolean
- Definition Classes
- HasStandardization
-
def
getThreshold: Double
Get threshold for binary classification.
Get threshold for binary classification.
If
thresholds
is set with length 2 (i.e., binary classification), this returns the equivalent threshold:1 / (1 + thresholds(0) / thresholds(1))
. Otherwise, returns
threshold
if set, or its default value if unset.1 / (1 + thresholds(0) / thresholds(1)) }}} Otherwise, returns
threshold
if set, or its default value if unset.- Definition Classes
- LogisticRegression → LogisticRegressionParams → HasThreshold
- Annotations
- @Since( "1.5.0" )
- Exceptions thrown
IllegalArgumentException
ifthresholds
is set to an array of length other than 2.
-
def
getThresholds: Array[Double]
Get thresholds for binary or multiclass classification.
Get thresholds for binary or multiclass classification.
If
thresholds
is set, return its value. Otherwise, ifthreshold
is set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an exception.- Definition Classes
- LogisticRegression → LogisticRegressionParams → HasThresholds
- Annotations
- @Since( "1.5.0" )
-
final
def
getTol: Double
- Definition Classes
- HasTol
-
def
getUpperBoundsOnCoefficients: Matrix
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
def
getUpperBoundsOnIntercepts: Vector
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
final
def
getWeightCol: String
- Definition Classes
- HasWeightCol
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
lowerBoundsOnCoefficients: Param[Matrix]
The lower bounds on coefficients if fitting under bound constrained optimization.
The lower bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
val
lowerBoundsOnIntercepts: Param[Vector]
The lower bounds on intercepts if fitting under bound constrained optimization.
The lower bounds on intercepts if fitting under bound constrained optimization. The bounds vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
final
val
maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
final
val
predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
-
final
val
probabilityCol: Param[String]
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
- HasProbabilityCol
-
final
val
rawPredictionCol: Param[String]
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
- HasRawPredictionCol
-
final
val
regParam: DoubleParam
Param for regularization parameter (>= 0).
Param for regularization parameter (>= 0).
- Definition Classes
- HasRegParam
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): LogisticRegression.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): LogisticRegression.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): LogisticRegression.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
def
setAggregationDepth(value: Int): LogisticRegression.this.type
Suggested depth for treeAggregate (greater than or equal to 2).
Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.
- Annotations
- @Since( "2.1.0" )
-
final
def
setDefault(paramPairs: ParamPair[_]*): LogisticRegression.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): LogisticRegression.this.type
Sets a default value for a param.
Sets a default value for a param.
- param
param to set the default value. Make sure that this param is initialized before this method gets called.
- value
the default value
- Attributes
- protected
- Definition Classes
- Params
-
def
setElasticNetParam(value: Double): LogisticRegression.this.type
Set the ElasticNet mixing parameter.
Set the ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty. For alpha in (0,1), the penalty is a combination of L1 and L2. Default is 0.0 which is an L2 penalty.
Note: Fitting under bound constrained optimization only supports L2 regularization, so throws exception if this param is non-zero value.
- Annotations
- @Since( "1.4.0" )
-
def
setFamily(value: String): LogisticRegression.this.type
Sets the value of param family.
Sets the value of param family. Default is "auto".
- Annotations
- @Since( "2.1.0" )
-
def
setFeaturesCol(value: String): LogisticRegression
- Definition Classes
- Predictor
-
def
setFitIntercept(value: Boolean): LogisticRegression.this.type
Whether to fit an intercept term.
Whether to fit an intercept term. Default is true.
- Annotations
- @Since( "1.4.0" )
-
def
setLabelCol(value: String): LogisticRegression
- Definition Classes
- Predictor
-
def
setLowerBoundsOnCoefficients(value: Matrix): LogisticRegression.this.type
Set the lower bounds on coefficients if fitting under bound constrained optimization.
Set the lower bounds on coefficients if fitting under bound constrained optimization.
- Annotations
- @Since( "2.2.0" )
-
def
setLowerBoundsOnIntercepts(value: Vector): LogisticRegression.this.type
Set the lower bounds on intercepts if fitting under bound constrained optimization.
Set the lower bounds on intercepts if fitting under bound constrained optimization.
- Annotations
- @Since( "2.2.0" )
-
def
setMaxIter(value: Int): LogisticRegression.this.type
Set the maximum number of iterations.
Set the maximum number of iterations. Default is 100.
- Annotations
- @Since( "1.2.0" )
-
def
setPredictionCol(value: String): LogisticRegression
- Definition Classes
- Predictor
-
def
setProbabilityCol(value: String): LogisticRegression
- Definition Classes
- ProbabilisticClassifier
-
def
setRawPredictionCol(value: String): LogisticRegression
- Definition Classes
- Classifier
-
def
setRegParam(value: Double): LogisticRegression.this.type
Set the regularization parameter.
Set the regularization parameter. Default is 0.0.
- Annotations
- @Since( "1.2.0" )
-
def
setStandardization(value: Boolean): LogisticRegression.this.type
Whether to standardize the training features before fitting the model.
Whether to standardize the training features before fitting the model. The coefficients of models will be always returned on the original scale, so it will be transparent for users. Note that with/without standardization, the models should be always converged to the same solution when no regularization is applied. In R's GLMNET package, the default behavior is true as well. Default is true.
- Annotations
- @Since( "1.5.0" )
-
def
setThreshold(value: Double): LogisticRegression.this.type
Set threshold in binary classification, in range [0, 1].
Set threshold in binary classification, in range [0, 1].
If the estimated probability of class label 1 is greater than threshold, then predict 1, else 0. A high threshold encourages the model to predict 0 more often; a low threshold encourages the model to predict 1 more often.
Note: Calling this with threshold p is equivalent to calling
setThresholds(Array(1-p, p))
. WhensetThreshold()
is called, any user-set value forthresholds
will be cleared. If boththreshold
andthresholds
are set in a ParamMap, then they must be equivalent.Default is 0.5.
- Definition Classes
- LogisticRegression → LogisticRegressionParams
- Annotations
- @Since( "1.5.0" )
-
def
setThresholds(value: Array[Double]): LogisticRegression.this.type
Set thresholds in multiclass (or binary) classification to adjust the probability of predicting each class.
Set thresholds in multiclass (or binary) classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values greater than 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
Note: When
setThresholds()
is called, any user-set value forthreshold
will be cleared. If boththreshold
andthresholds
are set in a ParamMap, then they must be equivalent.- Definition Classes
- LogisticRegression → LogisticRegressionParams → ProbabilisticClassifier
- Annotations
- @Since( "1.5.0" )
-
def
setTol(value: Double): LogisticRegression.this.type
Set the convergence tolerance of iterations.
Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy at the cost of more iterations. Default is 1E-6.
- Annotations
- @Since( "1.4.0" )
-
def
setUpperBoundsOnCoefficients(value: Matrix): LogisticRegression.this.type
Set the upper bounds on coefficients if fitting under bound constrained optimization.
Set the upper bounds on coefficients if fitting under bound constrained optimization.
- Annotations
- @Since( "2.2.0" )
-
def
setUpperBoundsOnIntercepts(value: Vector): LogisticRegression.this.type
Set the upper bounds on intercepts if fitting under bound constrained optimization.
Set the upper bounds on intercepts if fitting under bound constrained optimization.
- Annotations
- @Since( "2.2.0" )
-
def
setWeightCol(value: String): LogisticRegression.this.type
Sets the value of param weightCol.
Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.
- Annotations
- @Since( "1.6.0" )
-
final
val
standardization: BooleanParam
Param for whether to standardize the training features before fitting the model.
Param for whether to standardize the training features before fitting the model.
- Definition Classes
- HasStandardization
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
threshold: DoubleParam
Param for threshold in binary classification prediction, in range [0, 1].
Param for threshold in binary classification prediction, in range [0, 1].
- Definition Classes
- HasThreshold
-
val
thresholds: DoubleArrayParam
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
- HasThresholds
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
val
tol: DoubleParam
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
- HasTol
-
def
train(dataset: Dataset[_], handlePersistence: Boolean): LogisticRegressionModel
- Attributes
- protected[spark]
-
def
train(dataset: Dataset[_]): LogisticRegressionModel
Train a model using the given dataset and parameters.
Train a model using the given dataset and parameters. Developers can implement this instead of
fit()
to avoid dealing with schema validation and copying parameters into the model.- dataset
Training dataset
- returns
Fitted model
- Attributes
- protected[spark]
- Definition Classes
- LogisticRegression → Predictor
-
def
transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- Predictor → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- LogisticRegression → Identifiable
- Annotations
- @Since( "1.4.0" )
-
val
upperBoundsOnCoefficients: Param[Matrix]
The upper bounds on coefficients if fitting under bound constrained optimization.
The upper bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
val
upperBoundsOnIntercepts: Param[Vector]
The upper bounds on intercepts if fitting under bound constrained optimization.
The upper bounds on intercepts if fitting under bound constrained optimization. The bound vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since( "2.2.0" )
-
def
usingBoundConstrainedOptimization: Boolean
- Attributes
- protected
- Definition Classes
- LogisticRegressionParams
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
input schema
- fitting
whether this is in fitting
- featuresDataType
SQL DataType for FeaturesType. E.g.,
VectorUDT
for vector features.- returns
output schema
- Attributes
- protected
- Definition Classes
- LogisticRegressionParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
-
def
validateLabel(label: Double, numClasses: Int): Unit
Validates the label on the classifier is a valid integer in the range [0, numClasses).
Validates the label on the classifier is a valid integer in the range [0, numClasses).
- label
The label to validate.
- numClasses
Number of classes label can take. Labels must be integers in the range [0, numClasses).
- Attributes
- protected
- Definition Classes
- Classifier
-
def
validateNumClasses(numClasses: Int): Unit
Validates that number of classes is greater than zero.
Validates that number of classes is greater than zero.
- numClasses
Number of classes label can take.
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
weightCol: Param[String]
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
- HasWeightCol
-
def
write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from LogisticRegressionParams
Inherited from HasAggregationDepth
Inherited from HasThreshold
Inherited from HasWeightCol
Inherited from HasStandardization
Inherited from HasTol
Inherited from HasFitIntercept
Inherited from HasMaxIter
Inherited from HasElasticNetParam
Inherited from HasRegParam
Inherited from ProbabilisticClassifier[Vector, LogisticRegression, LogisticRegressionModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from Classifier[Vector, LogisticRegression, LogisticRegressionModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from Predictor[Vector, LogisticRegression, LogisticRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[LogisticRegressionModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.