Packages

class GaussianMixtureModel extends Model[GaussianMixtureModel] with GaussianMixtureParams with MLWritable with HasTrainingSummary[GaussianMixtureSummary]

Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points are drawn from each Gaussian i with probability weights(i).

Annotations
@Since( "2.0.0" )
Source
GaussianMixture.scala
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. GaussianMixtureModel
  2. HasTrainingSummary
  3. MLWritable
  4. GaussianMixtureParams
  5. HasAggregationDepth
  6. HasTol
  7. HasProbabilityCol
  8. HasWeightCol
  9. HasPredictionCol
  10. HasSeed
  11. HasFeaturesCol
  12. HasMaxIter
  13. Model
  14. Transformer
  15. PipelineStage
  16. Logging
  17. Params
  18. Serializable
  19. Serializable
  20. Identifiable
  21. AnyRef
  22. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final val aggregationDepth: IntParam

    Param for suggested depth for treeAggregate (>= 2).

    Param for suggested depth for treeAggregate (>= 2).

    Definition Classes
    HasAggregationDepth
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. final def clear(param: Param[_]): GaussianMixtureModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  9. def copy(extra: ParamMap): GaussianMixtureModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    GaussianMixtureModelModelTransformerPipelineStageParams
    Annotations
    @Since( "2.0.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  15. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  18. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  19. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  20. val gaussians: Array[MultivariateGaussian]
    Annotations
    @Since( "2.0.0" )
  21. def gaussiansDF: DataFrame

    Retrieve Gaussian distributions as a DataFrame.

    Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. Two columns are defined: mean and cov. Schema:

    root
     |-- mean: vector (nullable = true)
     |-- cov: matrix (nullable = true)
    Annotations
    @Since( "2.0.0" )
  22. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  23. final def getAggregationDepth: Int

    Definition Classes
    HasAggregationDepth
  24. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  25. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  26. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  27. def getK: Int

    Definition Classes
    GaussianMixtureParams
    Annotations
    @Since( "2.0.0" )
  28. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  29. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  30. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  31. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  32. final def getProbabilityCol: String

    Definition Classes
    HasProbabilityCol
  33. final def getSeed: Long

    Definition Classes
    HasSeed
  34. final def getTol: Double

    Definition Classes
    HasTol
  35. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  36. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  37. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  38. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  39. def hasSummary: Boolean

    Indicates whether a training summary exists for this model instance.

    Indicates whether a training summary exists for this model instance.

    Definition Classes
    HasTrainingSummary
    Annotations
    @Since( "3.0.0" )
  40. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  41. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  42. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  43. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  44. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  45. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  46. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  47. final val k: IntParam

    Number of independent Gaussians in the mixture model.

    Number of independent Gaussians in the mixture model. Must be greater than 1. Default: 2.

    Definition Classes
    GaussianMixtureParams
    Annotations
    @Since( "2.0.0" )
  48. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  49. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  51. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  52. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  53. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  54. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  55. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  56. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  58. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  59. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  61. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  62. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  63. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  64. lazy val numFeatures: Int
    Annotations
    @Since( "3.0.0" )
  65. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  66. var parent: Estimator[GaussianMixtureModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  67. def predict(features: Vector): Int
    Annotations
    @Since( "3.0.0" )
  68. def predictProbability(features: Vector): Vector
    Annotations
    @Since( "3.0.0" )
  69. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  70. final val probabilityCol: Param[String]

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.

    Definition Classes
    HasProbabilityCol
  71. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  72. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  73. final def set(paramPair: ParamPair[_]): GaussianMixtureModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  74. final def set(param: String, value: Any): GaussianMixtureModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  75. final def set[T](param: Param[T], value: T): GaussianMixtureModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  76. final def setDefault(paramPairs: ParamPair[_]*): GaussianMixtureModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  77. final def setDefault[T](param: Param[T], value: T): GaussianMixtureModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  78. def setFeaturesCol(value: String): GaussianMixtureModel.this.type

    Annotations
    @Since( "2.1.0" )
  79. def setParent(parent: Estimator[GaussianMixtureModel]): GaussianMixtureModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  80. def setPredictionCol(value: String): GaussianMixtureModel.this.type

    Annotations
    @Since( "2.1.0" )
  81. def setProbabilityCol(value: String): GaussianMixtureModel.this.type

    Annotations
    @Since( "2.1.0" )
  82. def summary: GaussianMixtureSummary

    Gets summary of model on training set.

    Gets summary of model on training set. An exception is thrown if hasSummary is false.

    Definition Classes
    GaussianMixtureModel → HasTrainingSummary
    Annotations
    @Since( "2.0.0" )
  83. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  84. def toString(): String
    Definition Classes
    GaussianMixtureModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  85. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  86. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    GaussianMixtureModelTransformer
    Annotations
    @Since( "2.0.0" )
  87. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  88. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  89. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    GaussianMixtureModelPipelineStage
    Annotations
    @Since( "2.0.0" )
  90. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  91. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    GaussianMixtureModelIdentifiable
    Annotations
    @Since( "2.0.0" )
  92. def validateAndTransformSchema(schema: StructType): StructType

    Validates and transforms the input schema.

    Validates and transforms the input schema.

    schema

    input schema

    returns

    output schema

    Attributes
    protected
    Definition Classes
    GaussianMixtureParams
  93. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  94. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  95. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  96. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  97. val weights: Array[Double]
    Annotations
    @Since( "2.0.0" )
  98. def write: MLWriter

    Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.

    Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.

    For GaussianMixtureModel, this does NOT currently save the training summary. An option to save summary may be added in the future.

    Definition Classes
    GaussianMixtureModelMLWritable
    Annotations
    @Since( "2.0.0" )

Inherited from HasTrainingSummary[GaussianMixtureSummary]

Inherited from MLWritable

Inherited from GaussianMixtureParams

Inherited from HasAggregationDepth

Inherited from HasTol

Inherited from HasProbabilityCol

Inherited from HasWeightCol

Inherited from HasPredictionCol

Inherited from HasSeed

Inherited from HasFeaturesCol

Inherited from HasMaxIter

Inherited from Model[GaussianMixtureModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter getters