public class KMeansModel extends Model<KMeansModel> implements KMeansParams, GeneralMLWritable, HasTrainingSummary<KMeansSummary>
param: parentModel a model trained by spark.mllib.clustering.KMeans.
Modifier and Type | Method and Description |
---|---|
Vector[] |
clusterCenters() |
KMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
distanceMeasure()
Param for The distance measure.
|
Param<String> |
featuresCol()
Param for features column name.
|
Param<String> |
initMode()
Param for the initialization algorithm.
|
IntParam |
initSteps()
Param for the number of steps for the k-means|| initialization mode.
|
IntParam |
k()
The number of clusters to create (k).
|
static KMeansModel |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
int |
numFeatures() |
int |
predict(Vector features) |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<KMeansModel> |
read() |
LongParam |
seed()
Param for random seed.
|
KMeansModel |
setFeaturesCol(String value) |
KMeansModel |
setPredictionCol(String value) |
KMeansSummary |
summary()
Gets summary of model on training set.
|
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
GeneralMLWriter |
write()
Returns a
GeneralMLWriter instance for this ML instance. |
transform, transform, transform
params
getInitMode, getInitSteps, getK, validateAndTransformSchema
getMaxIter
getFeaturesCol
getPredictionCol
getDistanceMeasure
getWeightCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
save
hasSummary, setSummary
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static MLReader<KMeansModel> read()
public static KMeansModel load(String path)
public final IntParam k()
KMeansParams
k
in interface KMeansParams
public final Param<String> initMode()
KMeansParams
initMode
in interface KMeansParams
public final IntParam initSteps()
KMeansParams
initSteps
in interface KMeansParams
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public final Param<String> distanceMeasure()
HasDistanceMeasure
distanceMeasure
in interface HasDistanceMeasure
public final DoubleParam tol()
HasTol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public final LongParam seed()
HasSeed
public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public final IntParam maxIter()
HasMaxIter
maxIter
in interface HasMaxIter
public String uid()
Identifiable
uid
in interface Identifiable
public int numFeatures()
public KMeansModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<KMeansModel>
extra
- (undocumented)public KMeansModel setFeaturesCol(String value)
public KMeansModel setPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public int predict(Vector features)
public Vector[] clusterCenters()
public GeneralMLWriter write()
GeneralMLWriter
instance for this ML instance.
For KMeansModel
, this does NOT currently save the training summary
.
An option to save summary
may be added in the future.
write
in interface GeneralMLWritable
write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object
public KMeansSummary summary()
hasSummary
is false.summary
in interface HasTrainingSummary<KMeansSummary>