public class LBFGS extends Object implements Optimizer, org.apache.spark.internal.Logging
| Constructor and Description | 
|---|
LBFGS(Gradient gradient,
     Updater updater)  | 
| Modifier and Type | Method and Description | 
|---|---|
Vector | 
optimize(RDD<scala.Tuple2<Object,Vector>> data,
        Vector initialWeights)
Solve the provided convex optimization problem. 
 | 
scala.Tuple2<Vector,double[]> | 
optimizeWithLossReturned(RDD<scala.Tuple2<Object,Vector>> data,
                        Vector initialWeights)  | 
static void | 
org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)  | 
static org.slf4j.Logger | 
org$apache$spark$internal$Logging$$log_()  | 
static scala.Tuple2<Vector,double[]> | 
runLBFGS(RDD<scala.Tuple2<Object,Vector>> data,
        Gradient gradient,
        Updater updater,
        int numCorrections,
        double convergenceTol,
        int maxNumIterations,
        double regParam,
        Vector initialWeights)
Run Limited-memory BFGS (L-BFGS) in parallel. 
 | 
LBFGS | 
setConvergenceTol(double tolerance)
Set the convergence tolerance of iterations for L-BFGS. 
 | 
LBFGS | 
setGradient(Gradient gradient)
Set the gradient function (of the loss function of one single data example)
 to be used for L-BFGS. 
 | 
LBFGS | 
setNumCorrections(int corrections)
Set the number of corrections used in the LBFGS update. 
 | 
LBFGS | 
setNumIterations(int iters)
Set the maximal number of iterations for L-BFGS. 
 | 
LBFGS | 
setRegParam(double regParam)
Set the regularization parameter. 
 | 
LBFGS | 
setUpdater(Updater updater)
Set the updater function to actually perform a gradient step in a given direction. 
 | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static scala.Tuple2<Vector,double[]> runLBFGS(RDD<scala.Tuple2<Object,Vector>> data, Gradient gradient, Updater updater, int numCorrections, double convergenceTol, int maxNumIterations, double regParam, Vector initialWeights)
data - - Input data for L-BFGS. RDD of the set of data examples, each of
               the form (label, [feature values]).gradient - - Gradient object (used to compute the gradient of the loss function of
                   one single data example)updater - - Updater function to actually perform a gradient step in a given direction.numCorrections - - The number of corrections used in the L-BFGS update.convergenceTol - - The convergence tolerance of iterations for L-BFGS which is must be
                         nonnegative. Lower values are less tolerant and therefore generally
                         cause more iterations to be run.maxNumIterations - - Maximal number of iterations that L-BFGS can be run.regParam - - Regularization parameter
 initialWeights - (undocumented)public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)
public LBFGS setNumCorrections(int corrections)
corrections - (undocumented)public LBFGS setConvergenceTol(double tolerance)
tolerance - (undocumented)public LBFGS setNumIterations(int iters)
iters - (undocumented)public LBFGS setRegParam(double regParam)
regParam - (undocumented)public LBFGS setGradient(Gradient gradient)
gradient - (undocumented)public LBFGS setUpdater(Updater updater)
updater - (undocumented)public Vector optimize(RDD<scala.Tuple2<Object,Vector>> data, Vector initialWeights)
Optimizer